Cinema 4D Cinema 4D Prime Create Menu Spline Text
Function available in CINEMA 4D Prime, Visualize, Broadcast, Studio & BodyPaint 3D
Text Object

Basic Coord. Object

Object Properties


Enter the text into the Text box. You can enter up to multiple lines of text — press Return to start a new line. The text appears in the viewport as a spline primitive when click outside the text box.


TrueType, OpenType and PostscriptFonts can all be used in Cinema 4D. However the following restrictions do apply:

The font preview in the selection menu makes it easy to select the right font. You can also scroll up and down the list using the arrow keys or scroll wheel.


Set the text’s alignment to left-aligned, centered or right-aligned.

The following 3 parameters apply to the complete text whereby the Kerning settings affect individual letters and are used additively to these parameters.

Height [-∞..+∞m]

The height of the letters, in world coordinates.

Horizontal Spacing [-∞..+∞m]

With these command you can insert space between the characters.

Vertical Spacing [-∞..+∞m]

With these command you can insert space between the text lines.

Cinema 4D generates text objects as connected splines. Add depth to these objects using an Extrude object. Create an Extrude object and in the Object Manager, drag the name of the text spline onto the name of the Extrude object. Symbols can be used.

Some fonts are poorly designed and will have noticeable overlapping edges. Cinema 4D cannot improve these faults. Always use high quality fonts for best results.

You can get a good result with 3D fonts by using the Bevel command on a font object and restricting the angle limit to approx. 20°.

Separate Letters

Enable this option. Now choose Mesh / Conversions / Make Editable. A new object is created that has a separate spline child object for each letter of the text.

The object axes of the separate letter splines are placed at the baseline of the chosen font.

This option is especially useful when you want to arrange text (the separate letters) along a spline.


The Kerning settings let you define text size and spacing per letter. This should eliminate the need for external programs for making parametric modifications to text, e.g., if you want to adjust the spacing between the letters "A” and "V” (which is quite common). All modifications can be made interactively in the Viewport.

The following properties can be modified for a given letter (or for an entire text):

In the end you can come up with parametric creations like the one on the right:

How it Works

Enabling the Show 3D GUI option will display the following handles in the Viewport:

Any of the marked handles can be selected and dragged with the mouse.

Above each letter you will see a correspondingly marked square handle, which can be dragged (without Selection) to adjust the spacing to the left of the letter. Of course a Selection can also be used:

Letter selections can be made independent of the text itself and affect only those letters, i.e., if you select letters 5-9 and enter a different text, only letters 5-9 will be affected.

Dragging a handle – and pressing the following keys - will have the following effect:


3D Handles

Use this option to define whether or not the interactive 3D handles should be displayed in the Viewport. This option should be disabled as soon as you have finished fine-tuning the kerning of the text to avoid inadvertently modifying text properties at a later point.

The following parameters can also be adjusted interactively in the Viewport by using the corresponding handles (see above).


These settings are numeric selections that you can normally define interactively in the Viewport (see above). However, it can be easier to modify these values in the Attribute Manager if, for example, the letter handles overlap. If you want to select the 2nd letter, enter 1 for Start and 2 for End. To select letters 3 to 6, enter 2 and 6, respectively.

These settings can be used to successively access all individual letters and their kerning parameters using and Iteration XPresso node.

Kerning / Tracking

Both settings basically have the same function in Cinema 4D with the exception that Tracking can be modified at any time in the Viewport without making a selection using the handles positioned above each letter. The Kerning setting – which is displayed as a single handle when multiple letters are selected – can be applied to multiple letters simultaneously.

Both settings are used to adjust the spacing to the left of each letter.

Horizontal / Vertical Scale

Use these settings to individually adjust letters’ horizontal and vertical scale.


This value defines the overall scaling of letters (taking the aforementioned values into consideration).

Baseline Shift

Use this setting to shift the position of letters up or down.

Reset All

Clicking this button will set all values back to their default values.

Reset Selected

Clicking this button will reset the values of all selected letters back to their default values.

Select All

Clicking this button will select all letters in the Attribute Manager’s Text field.

Note that the Kerning settings cannot be animated via normal keyframes for internal reasons. Animations can be done via XPresso where all Kerning settings can be accessed. Use the following Project as a reference:


With this drop-down list you choose in which of the three planes the spline primitive is created.


Enabling this option will reverse the point order of the spline (see also Spline Primitives.



This simplest of all the spline types connects the vertices, which define the polygon, with straight, directly connected lines. You can use these splines to create angular objects or to simulate sharp jerky movements for animation.


This kind of spline has a soft curve between vertices. The interpolated curve passes directly through the vertices. Looking at the two points at the top right of the diagram, you can see that the curve bulges more than is probably required. This behavior is called overshooting, and it often appears with closed curvatures. This becomes clearer when you compare this section of the curve with the same section of the curve with Akima interpolation.


This spline type creates a soft curve between vertices. The interpolated curve always passes directly through the vertices. Overshooting does not happen with this type of curve. Akima interpolation adheres very closely to the path of the curve directly between the vertices but, because of this, it can sometimes appear somewhat hard. If this is not required, you should use Cubic interpolation.


This kind of spline also creates a soft curve between the vertices. However, the curve does not pass directly through the vertices. This produces a very smooth curve. The vertices control only the approximate path of the curve. Distant points have less influence on the curve than those lying closer together.


This spline type creates a soft curve path between the vertices, which can be controlled very precisely. The interpolated curve always passes through the vertices. Overshoot does not happen.

Compared to the other spline types available, Bezier splines are the most functional, offering the most control. Therefore Cinema 4D uses Bezier splines for its animation system.

If you activate a vertex of the spline (i.e. by clicking on it), additional control points at the tangents to the curve become visible. Changing the direction of the tangent handles controls the direction of the curve at each vertex. To do this, drag the tangent end point.

The editing methods described below refer to the Move, Rotate and Scale tools. Note the Spline-Stift, which is optimized for working with splines and therefore works somewhat differently as described below.

By adjusting the length of these tangent handles, you can control the strength of the curvature. Drag the tangent end point towards the vertex point and observe the symmetrical movement of the opposite handle.

In the previous illustrations all tangents lie horizontally. Now let’s rotate the tangent of the upper point through 180° so that the left tangent end point lies on the right, the right on the left.

You can see the result in this illustration.

You can change the lengths of the tangents separately from each other. To do this, Shift-drag a tangent end point.

You can set different tangent directions on the right and on the left of the vertex. With this approach you can make the otherwise smooth path of a curve produce sharp corners and peaks, if required. To do this, Shift-drag a tangent end point.

If the tangents of two neighboring points have zero length, the segment that runs between the vertices will be linear. Thus, you can mix linear segments with curved spline shapes.

If you double-click on a Bezier vertex with the Move, Scale or Rotate tool active, a dialog opens that allows you to accurately enter both the position of the vertex (in the spline’s object coordinates) and the position of the tangent end points (relative to the vertex) numerically.

If you convert a Bezier spline to a different type of spline, all tangent settings will be lost. If a spline is converted from a non-Bezier type to a Bezier type, all tangents will be assigned default positions and orientations.

Close Spline

Close Spline enabled (left) and disabled (right).

Each spline segment can be closed or open. If a spline is closed, the start and end points are connected.

There is a big difference between closing a spline (and interconnecting the start and end points) and simply positioning the start and end points together. In the first case, the transition from the start to the end point is soft, in the second case it is abrupt.

To close the spline, Ctrl-click the start point.

Intermediate Points

Here you can define how the spline is further subdivided with intermediate points. This affects the number of subdivisions created when using the spline with Generator objects. Even after you select the Interpolation type from the menu for the Intermediate Points, you can still make changes.


This method of interpolation locates points only at the vertices of a spline, using no additional intermediate points. You cannot enter values into the Number or Angle boxes. For B-splines, the vertices, and therefore points, might not be located on the spline curve.


This interpolation type first locates points at spline vertices. In the case of B-splines, points are located at positions on the spline curve closest to the spline vertices. Number (N) corresponds to the number of intermediate points between vertices. The points are positioned closer together on areas of the spline with more curvature.

You cannot enter values into the Angle box. The interpolation is not affected by reversing the point order.


This interpolation subdivides the spline so that the distance between any two consecutive points, as measured along the spline curvature, is constant. One point is always located at the beginning vertex. For open splines, a point is also located at the ending vertex. Other points generally do not coincide with vertices.

You cannot enter values into the Angle box. The interpolation is not affected by reversing the point order.

For Natural and Uniform interpolation, the number of intermediate points is calculated as follows:

Open spline: ((Number + 1) * (number of vertices - 1)) + 1

Closed spline: (Number +1) * number of vertices

So an open spline with four vertices and a number of 2 will contain ((2+1)*(4-1))+1=10 intermediate points. If the spline is then closed, a further (virtual) vertex is added — the number of intermediate points will then be (2+1)*4=12. This ensures that a spline is not more roughly divided when you close it.


This interpolation type sets intermediate points whenever the angle deviation of the curve is larger than the value given in Angle. The points of the resulting curve pass through the vertices. If a spline has several segments, then the value of Angle will apply to each segment.

The Adaptive method gives the best results in rendering, hence it is the default interpolation method.

You cannot enter values into the Number box.


Subdivided is similar to Adaptive. Additional intermediate points will be added until the intermediate segments are shorter than the defined Maximum Length, i.e., the point intervals will not necessarily be equal to the maximum length. Lower values will result in higher quality, along with the disadvantages of working with a high number of points - slower refresh times in the editor view, etc.

Especially the render quality of deformed text can be greatly improved using this method. More or less perfect caps and edges without shading errors can be achieved by setting Maximum Length to the same value as Width in the Extrude object (Caps tab, activated Regular Grid option). The subdivision of the letters and caps will match and must not be done manually.

Left: Intermediate points Adaptive; right: Subdivided, applied to an active formula deformation object. Note the defined edges at the right of the image.

Number [0..5000]

Angle [0..90°]

Maximum Length [0.01..+∞m]

This setting controls the maximum spline segment length without adding intermediate points, and is only available if the Intermediate Points parameter is set to Subdivided.